A SURVEY ON SINGULAR SOLUTIONS OF FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

By Shyuichi Izumiya, Bing Li and Jianming Yu

Abstract

This is a summary of the papers $[9,10,11,12,13,15]$, in which we mainly studied singular solutions of first order differential equations.

0. Introduction

How should we define the notion of singular solutions for differential equations? In [$9,10,11,12,13,15]$ we have considered this philosophical and stimulating problem for first order differential equations. The first example of singular solutions was discovered by Brook Tayler about 290 years ago (cf. [7]). 20 years after that Alex Claude Clairaut studied a class of equations which have singular solutions [2]. This equation is called the Clairaut equation now: $y=x \cdot \frac{d y}{d x}+f\left(\frac{d y}{d x}\right)$. It has a quite beautiful geometric structure as follows : There exists a "general solution" that consists of lines ; $y=t \cdot x+f(t)$, where t is a parameter and the singular solution is the envelope of such a family. In classical treatises of equations (Carathéodory [1], Courant-Hilbert [3], Forsyth [4] [5], Ince [7], Petrovski [17]) the discussions of equations with singular solutions are informal. In these, a "general solution" of a differential equation is defined to be an one-parameter family of solutions and a "singular solution" is a solution which is not contained in the "general solution". However, this definition of singular solutions is very confused as the following example shows:

Example 0.1. Consider the equation $y=2 p \cdot x-p^{2}$, where $p=\frac{d y}{d x}$. In [7] the "general solution" is given by

$$
\left\{\begin{array}{l}
x=\frac{c}{p^{2}}+\frac{2}{3} p \\
y=2 p \cdot x-p^{2}
\end{array}\right.
$$

where c is a parameter. It is clear that $y=0$ is also a solution, but it is not contained in the "general solution". Then $y=0$ must be the "singular solution". On the other hand, we have a two parameter family of solutions :

$$
\gamma_{\left(c_{1}, c_{2}\right)}(t)=(x, y, p)=\left(\frac{2}{3} c_{1} e^{-t}+c_{2} e^{2 t}, \frac{1}{3} c_{1}^{2} e^{-2 t}+2 c_{1} c_{2} e^{t}, c_{1} e^{-t}\right)
$$

If we fix $p(0)=c_{1} \neq 0$ and put $c=c_{2} c_{1}^{2}$, then we have $x=\frac{2}{3} p+\frac{c}{p^{2}}$ and $y=2 p \cdot x-p^{2}$. But, if we fix $p(0)=c_{1}=0$, then we have $y=0$. Moreover, if we consider this family of

