ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 32, Number 2, Summer 2002

NUMERICAL CALCULATION OF THE GENERALIZED SINE AND COSINE INTEGRAL

K.-D. REINSCH, R. BULIRSCH AND U. PUSCHMANN

ABSTRACT. A method is presented for the efficient calculation of the generalized sine and cosine integral. The evaluation is done by Čebyšev series with two nested recursions.

1. Introduction. The generalized sine and cosine integrals (see Table 1) are defined as

(1)
$$\operatorname{Si}(x,\alpha) := \int_0^x \frac{\sin t}{t^{\alpha}} dt, \quad 0 \le x, 0 < \alpha < 2,$$

(2)
$$\operatorname{Ci}(x,\alpha) := \int_0^x \frac{\cos t}{t^{\alpha}} dt, \quad 0 \le x, 0 < \alpha < 1.$$

Both functions were extensively studied in all details with respect to their analytical behaviour in Kreyszig [5]. In an earlier paper by Walther [7] the generalized sine integral was already used to study the Gibbs's phenomenon of Fourier series.

Special cases of both integrals are well known.

For $\alpha = 1$ we obtain the "ordinary" sine integral Si $(x) := \int_0^x (\sin t/t) dt$ and for $\alpha = (1/2)$ the Fresnel integrals

$$\int_{0}^{x} \frac{\sin t}{\sqrt{t}} dt = 2 \int_{0}^{\sqrt{x}} \sin \tau^{2} d\tau, \qquad \int_{0}^{x} \frac{\cos t}{\sqrt{t}} dt = 2 \int_{0}^{\sqrt{x}} \cos \tau^{2} d\tau.$$

A close relationship exists between both integrals to the hypergeometric function $_1F_2$, the incomplete Gamma function γ and the confluent

Received by the editors on November 8, 2000, and in revised form on January 12, 2001.

Copyright ©2002 Rocky Mountain Mathematics Consortium